Effects of strand and directional asymmetry on base-base coupling and charge transfer in double-helical DNA.

نویسندگان

  • Melanie A O'Neill
  • Jacqueline K Barton
چکیده

Mechanistic models of charge transfer (CT) in macromolecules often focus on CT energetics and distance as the chief parameters governing CT rates and efficiencies. However, in DNA, features unique to the DNA molecule, in particular, the structure and dynamics of the DNA base stack, also have a dramatic impact on CT. Here we probe the influence of subtle structural variations on base-base CT within a DNA duplex by examining photoinduced quenching of 2-aminopurine (Ap) as a result of hole transfer (HT) to guanine (G). Photoexcited Ap is used as a dual reporter of variations in base stacking and CT efficiency. Significantly, the unique features of DNA, including the strandedness and directional asymmetry of the double helix, play a defining role in CT efficiency. For an (AT)n bridge, the orientation of the base pairs is critical; the yield of intrastrand HT is markedly higher through (A)n compared with (T)n bridges, whereas HT via intrastrand pathways is more efficient than through interstrand pathways. Remarkably, for reactions through the same DNA bridge, over the same distance, and with the same driving force, HT from photoexcited Ap to G in the 5' to 3' direction is more efficient and less dependent on distance than HT from 3' to 5'. We attribute these differences in HT efficiency to variations in base-base coupling within the DNA assemblies. Thus base-base coupling is a critical parameter in DNA CT and strongly depends on subtle structural nuances of duplex DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation on Turbulent Nanofluid Flow in Helical Tube in Tube Heat Exchangers

In this study, the thermal characteristics of turbulent nanofluid flow in a helical tube in the tube heat exchanger (HTTHE) were assessed numerically through computational fluid dynamics (CFD) simulation. The findings of both the turbulent models: realizable k-epsion (k-ε) and re-normalisation group (RNG) k-epsilon were compared. The temperature distribution contours show that realizable and RN...

متن کامل

Modeling the distribution of deposited energy by alpha particles from Radon 223 decay and its effect on DNA

 The ionizing radiations, through physical and chemical processes, lead to simple and complex single- and double- strand breaks, as well as base lesions to the DNA. In this study, taking into account all the physical and chemical processes involved in the interaction of ionizing radiation with matter, the initial damage induced to DNA was evaluated for 5.7 MeV alpha-rays from Radon 223 isotope....

متن کامل

Numerical analysis of heat transfer in helical tube with the aluminum oxide (Al2O3) nano fluid injection in water

The most important reason for the design of curved tubes is increasing the heat transfer between the fluid and the wall which has provided many applications in various industries such as air conditioning, micro-electric, heat exchangers and etc. The aim of this study is numerical investigation of nano fluids flow in spiral tubes with injection of base fluid in different Reynolds numbers. Accord...

متن کامل

Preparation of CuO nanoparticles by thermal decomposition of double-helical dinuclear copper(II) Schiff-base complexes

In this paper, two double helical dinuclear copper(II) complexes of bis-N,O-bidentate Schiff base ligands bis(3-methoxy-N-salicylidene-4,4'-diaminodiphenyl)sulfone (L1) and bis(5-bromo-N-salicylidene-4,4'-diaminodiphenyl)sulfone (L2) were prepared and characterized by elemental analyses (CHN), as well as thermal analysis. Elemental analyses (CHN) suggested that the reaction between ligands and ...

متن کامل

Sequence-specific cleavage of double helical DNA by triple helix formation.

Homopyrimidine oligodeoxyribonucleotides with EDTA-Fe attached at a single position bind the corresponding homopyrimidine-homopurine tracts within large double-stranded DNA by triple helix formation and cleave at that site. Oligonucleotides with EDTA.Fe at the 5' end cause a sequence specific double strand break. The location and asymmetry of the cleavage pattern reveal that the homopyrimidine-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 26  شماره 

صفحات  -

تاریخ انتشار 2002